יום שלישי, 14 בינואר 2020

מספר מרוכב על מעגל היחידה

מספר מרוכבים מתוארים לעתים באופן גרפי כך שהציר האופקי (ציר x) מציין את החלק הממשי של המספר המרוכב, והציר האנכי (ציר y) מציין את הערך המדומה של המספר המרוכב.
מעגל היחידה מתאר את המקום הגאומטרי של המספרים המרוכבים שערכם המוחלט 1. זהו מעגל שרדיוסו בגודל יחידה ומרכזו ראשית הצירים. נקודות המעגל הוא המספרים המרוכבים שערכם המוחלט שווה 1. כלומר סכום ריבועי החלק הממשי והחלק הדמיוני של המספר המרוכב שווה 1.

מספר מרוכב על מעגל היחידה
מספר מרוכב על מעגל היחידה

תרגיל
הוכח שאם המספר המרוכב z נמצא על מעגל היחידה, אז נמצא גם על מעגל היחידה.

הוכחה:

נניח כי z=a+bi
מאחר ו- z  על מעגל היחידה מתקיים:
 

 נוכיח ש-
 

הוכחה:
 




אין תגובות:

הוסף רשומת תגובה

בגרות 3 יחידות לימוד מתמטיקה חורף 2020 - הסתברות וסטטיסטיקה

  מתוך שאלון בגרות 3 יחידות מתמטיקה חורף 2020 - שאלון ראשון שאלה 6 שאלה מטילים פעם אחת שתי קוביות משחק הוגנות ומחשבים את סכום המספרים שהתקבל...